
25/10/2021 19:25 NB Vs SVM Vs Neural Network.ipynb - Colaboratory

https://colab.research.google.com/drive/1QLWW-lKZNCg8bwVNnWQ7cEWsUdwPsIDB#scrollTo=8nRr0Me2Z5QP&printMode=true 1/5

Packages Importation

 1

 2

 3

 4

 5

 6

import pandas as pd # pandas is used to read files of the datasets

from sklearn.model_selection import train_test_split # train_test_split is used to part
from sklearn.naive_bayes import GaussianNB # GaussianNB() is the naive bayes classifier
from sklearn.svm import SVC # SVC() is the Support Vector Machines Classifier

from sklearn.neural_network import MLPClassifier # MLPClassifier us the Neural Network
from sklearn.metrics import confusion_matrix, classification_report # Confusion_matrix

Dataset Preparation

Variance Skewness Curtosis Entropy Class

0 3.62160 8.6661 -2.8073 -0.44699 0

1 4.54590 8.1674 -2.4586 -1.46210 0

2 3.86600 -2.6383 1.9242 0.10645 0

3 3.45660 9.5228 -4.0112 -3.59440 0

4 0.32924 -4.4552 4.5718 -0.98880 0

 1

 2

df=pd.read_csv('bill_authentication.csv') # Read the dataset in a new data frame(df)

df.head() # Display the first five rows (5 premières lignes)

Variance Skewness Curtosis Entropy Class

1367 0.40614 1.34920 -1.4501 -0.55949 1

1368 -1.38870 -4.87730 6.4774 0.34179 1

1369 -3.75030 -13.45860 17.5932 -2.77710 1

1370 -3.56370 -8.38270 12.3930 -1.28230 1

1371 -2.54190 -0.65804 2.6842 1.19520 1

 1
df.tail() # Display the last five rows (5 denières lignes)

We notice that:

We have 4 features: Variance, Skewness, Curtosis and Entropy;
We have 2 classes: Class 0 and Class 1;
We have at all 1372 samples.

25/10/2021 19:25 NB Vs SVM Vs Neural Network.ipynb - Colaboratory

https://colab.research.google.com/drive/1QLWW-lKZNCg8bwVNnWQ7cEWsUdwPsIDB#scrollTo=8nRr0Me2Z5QP&printMode=true 2/5

Partitioning Data
[X_train,X_test,y_train,y_test]=train_test_split(X,y,test_size=0.2)
This function create two
parititions of the dataset with a test size of 0.2:

Train dataset (80% of the overall dataset)
Test dataset (20% of the overall dataset)

X denotes the matrix of features X-> delete from df the coloumn class
y denotes the label coloumn y-> troncate the df only on the coloumn class

Variance Skewness Curtosis Entropy

0 3.62160 8.6661 -2.8073 -0.44699

1 4.54590 8.1674 -2.4586 -1.46210

2 3.86600 -2.6383 1.9242 0.10645

3 3.45660 9.5228 -4.0112 -3.59440

4 0.32924 -4.4552 4.5718 -0.98880

 1

 2

 3

X=df.drop('Class',axis=1)

y=df['Class']

X.head()

 1
[X_train,X_test,y_train,y_test]=train_test_split(X,y,test_size=0.2)

Train dataset = 80% * Number of samples (1372) = 1372 * 0.8
Test dataset = 20% * Number of samples (1372) = 1372 * 0.2
A.N: Train dataset = 1097.6 & Test dataset = 274.4

Train dataset size: 1097/1372

Test dataset size: 275/1372

 1

 2

print("Train dataset size: {}/{}".format(len(X_train),len(y)))

print("Test dataset size: {}/{}".format(len(X_test),len(y)))

X_train: Features of train;
y_train: Labels of X_train;
X_test : Fetaures of test;
y_test : Labels of X_test.

Machine Learning: NB Vs SVM Vs Neural Network

25/10/2021 19:25 NB Vs SVM Vs Neural Network.ipynb - Colaboratory

https://colab.research.google.com/drive/1QLWW-lKZNCg8bwVNnWQ7cEWsUdwPsIDB#scrollTo=8nRr0Me2Z5QP&printMode=true 3/5

We will compare between these 3 classifiers on the same partitioned data. Let's start by the
initialization of the classifier which we will compare.

1
2
3
4
5
6

gnb=GaussianNB() # gnb is a naive bayes classifier
linear_svm =SVC(kernel='linear') # linear_svm is a Linear Support Vectors
rbf_svm =SVC(kernel='rbf') # rbf_svm is a RBF support vectors
sigmoid_svm =SVC(kernel='sigmoid')# sigmoid support vectors
ploy_svm =SVC(kernel='poly',degree=2) # Ploynom with degree=2 as support vectors
neural=MLPClassifier(hidden_layer_sizes=(100,20),activation='relu',solver='adam') # neu

neural=MLPClassifier parametres:

hidden_layer_sizes=(100,20): 4x100x20x2
activation='relu': activation function in all neurons is Relu(x)
solver='adam' : algorithm for weights' update during the training
defalut value of learning rate (alph): 0.001

Now, we will move to the training process with using of the fit() function.

MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9,

 beta_2=0.999, early_stopping=False, epsilon=1e-08,

 hidden_layer_sizes=(100, 20), learning_rate='constant',

 learning_rate_init=0.001, max_fun=15000, max_iter=200,

 momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,

 power_t=0.5, random_state=None, shuffle=True, solver='adam',

 tol=0.0001, validation_fraction=0.1, verbose=False,

 warm_start=False)

1
2
3
4
5
6

gnb.fit(X_train,y_train) # Train Guassian NB classifier
linear_svm.fit(X_train,y_train) # Train SVM
rbf_svm.fit(X_train,y_train)
sigmoid_svm.fit(X_train,y_train)
ploy_svm.fit(X_train,y_train)
neural.fit(X_train,y_train) # Train Neural Network - finding the best weight matrix

Now, we will test the learned models!

We will ask the model to give a prediction based on its learning
Each Classifier will produce a prediction; y_nb,y_linear_svm,etc.

We have two types of labels:

y_test: true label coming from the initial dataset
y_nb, y_linear_svm, y_rbf_svm, y_sigmoid_svm, y_ploy_svm et y_neural: are the labels
predicted by the models: naive bayes, svm with all kernels and neural network
!!! Le
modèle est performant si et seulement si sa prédiction ègale aux vrais labels !!!

25/10/2021 19:25 NB Vs SVM Vs Neural Network.ipynb - Colaboratory

https://colab.research.google.com/drive/1QLWW-lKZNCg8bwVNnWQ7cEWsUdwPsIDB#scrollTo=8nRr0Me2Z5QP&printMode=true 4/5

 1

 2

 3

 4

 5

 6

y_nb=gnb.predict(X_test)

y_linear_svm=linear_svm.predict(X_test)

y_rbf_svm=rbf_svm.predict(X_test)

y_ploy_svm=ploy_svm.predict(X_test)

y_sigmoid_svm=sigmoid_svm.predict(X_test)

y_neural=neural.predict(X_test)

Performance Evaluation

************* Peformance Evauation of Naive Bayes **************

[[129 17]

 [29 100]]

 precision recall f1-score support

 0 0.82 0.88 0.85 146

 1 0.85 0.78 0.81 129

 accuracy 0.83 275

 macro avg 0.84 0.83 0.83 275

weighted avg 0.83 0.83 0.83 275

************* Peformance Evauation of Linear SVM **************

[[143 3]

 [0 129]]

 precision recall f1-score support

 0 1.00 0.98 0.99 146

 1 0.98 1.00 0.99 129

 accuracy 0.99 275

 macro avg 0.99 0.99 0.99 275

weighted avg 0.99 0.99 0.99 275

************* Peformance Evauation of RBF SVM **************

[[144 2]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

print ('************* Peformance Evauation of Naive Bayes **************')
print(confusion_matrix(y_test,y_nb))
print(classification_report(y_test,y_nb))
print ('************* Peformance Evauation of Linear SVM **************')
print(confusion_matrix(y_test,y_linear_svm))
print(classification_report(y_test,y_linear_svm))
print ('************* Peformance Evauation of RBF SVM **************')
print(confusion_matrix(y_test,y_rbf_svm))
print(classification_report(y_test,y_rbf_svm))
print ('************* Peformance Evauation of Sigmoid SVM **************')
print(confusion_matrix(y_test,y_sigmoid_svm))
print(classification_report(y_test,y_sigmoid_svm))
print ('************* Peformance Evauation of Polynomial (2) SVM **************')
print(confusion_matrix(y_test,y_ploy_svm))
print(classification_report(y_test,y_ploy_svm))
print ('************* Peformance Evauation of Neural Network **************')
print(confusion_matrix(y_test,y_neural))
print(classification_report(y_test,y_neural))

25/10/2021 19:25 NB Vs SVM Vs Neural Network.ipynb - Colaboratory

https://colab.research.google.com/drive/1QLWW-lKZNCg8bwVNnWQ7cEWsUdwPsIDB#scrollTo=8nRr0Me2Z5QP&printMode=true 5/5

check 0s completed at 19:25

 [0 129]]

 precision recall f1-score support

 0 1.00 0.99 0.99 146

 1 0.98 1.00 0.99 129

 accuracy 0.99 275

 macro avg 0.99 0.99 0.99 275

weighted avg 0.99 0.99 0.99 275

************* Peformance Evauation of Sigmoid SVM **************

[[106 40]

 [50 79]]

 precision recall f1-score support

 0 0.68 0.73 0.70 146

 1 0.66 0.61 0.64 129

 accuracy 0.67 275

 macro avg 0.67 0.67 0.67 275

weighted avg 0.67 0.67 0.67 275

************* Peformance Evauation of Polynomial (2) SVM **************

[[140 6]

 [0 129]]

 precision recall f1-score support

 0 1.00 0.96 0.98 146

 1 0.96 1.00 0.98 129

 accuracy 0.98 275

 macro avg 0.98 0.98 0.98 275

weighted avg 0.98 0.98 0.98 275

